Download Analytic Hyperbolic Geometry. Mathematical Foundations and by Abraham A. Ungar PDF

Posted by

By Abraham A. Ungar

This is often the 1st e-book on analytic hyperbolic geometry, absolutely analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics simply as analytic Euclidean geometry regulates classical mechanics. The booklet offers a unique gyrovector house method of analytic hyperbolic geometry, totally analogous to the well known vector house method of Euclidean geometry. A gyrovector is a hyperbolic vector. Gyrovectors are equivalence sessions of directed gyrosegments that upload in response to the gyroparallelogram legislations simply as vectors are equivalence sessions of directed segments that upload based on the parallelogram legislation. within the ensuing “gyrolanguage” of the ebook one attaches the prefix “gyro” to a classical time period to intend the analogous time period in hyperbolic geometry. The prefix stems from Thomas gyration, that's the mathematical abstraction of the relativistic impression often called Thomas precession. Gyrolanguage seems to be the language one must articulate novel analogies that the classical and the trendy during this ebook percentage. The scope of analytic hyperbolic geometry that the booklet provides is cross-disciplinary, related to nonassociative algebra, geometry and physics. As such, it really is evidently appropriate with the specified conception of relativity and, quite, with the nonassociativity of Einstein speed addition legislations. in addition to analogies with classical effects that the ebook emphasizes, there are notable disanalogies besides. hence, for example, not like Euclidean triangles, the perimeters of a hyperbolic triangle are uniquely decided by way of its hyperbolic angles. stylish formulation for calculating the hyperbolic side-lengths of a hyperbolic triangle when it comes to its hyperbolic angles are offered within the e-book. The publication starts with the definition of gyrogroups, that's absolutely analogous to the definition of teams. Gyrogroups, either gyrocommutative and nongyrocommutative, abound in crew conception. strangely, the doubtless structureless Einstein speed addition of distinct relativity seems to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, a few gyrocommutative gyrogroups of gyrovectors turn into gyrovector areas. The latter, in flip, shape the environment for analytic hyperbolic geometry simply as vector areas shape the atmosphere for analytic Euclidean geometry. by way of hybrid options of differential geometry and gyrovector areas, it truly is proven that Einstein (Möbius) gyrovector areas shape the surroundings for Beltrami–Klein (Poincaré) ball versions of hyperbolic geometry. ultimately, novel functions of Möbius gyrovector areas in quantum computation, and of Einstein gyrovector areas in specific relativity, are awarded.

Show description

Read or Download Analytic Hyperbolic Geometry. Mathematical Foundations and Applications PDF

Similar mathematical physics books

Uncertainty and Surprise in Complex Systems: Questions on Working with the Unexpected

Complexity technology has been a resource of recent perception in actual and social platforms and has confirmed that unpredictability and shock are primary elements of the area round us. This publication is the end result of a dialogue assembly of prime students and important thinkers with services in advanced platforms sciences and leaders from various agencies, backed by way of the Prigogine middle on the college of Texas at Austin and the Plexus Institute, to discover thoughts for knowing uncertainty and shock.

Vorlesungen über partielle Differentialgleichungen

Nach seinem bekannten und viel verwendeten Buch ? ber gew? hnliche Differentialgleichungen widmet sich der ber? hmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten artwork f? hrt er ? ber einen geometrischen, anschaulichen Weg in das Thema ein, und erm?

Archimedes' Revenge: The Joys and Perils of Mathematics

An advent to the delights and demanding situations of contemporary arithmetic.

Additional info for Analytic Hyperbolic Geometry. Mathematical Foundations and Applications

Example text

262), Bd. 1): V(x, y, z) = −α x2 + y2 + z 2 (z. B. α = γ m M) . In kartesischen Koordinaten ergeben sich recht komplizierte Bewegungsgleichungen. Wir haben im Beispiel 3 des Abschn. 1 bereits die Verwendung von Kugelkoordinaten als generalisierte Koordinaten als zweckmäßig erkannt. In diesen lautet die LagrangeFunktion: ˙ , ϕ˙ = L r, ϑ, ϕ, ˙r, ϑ m 2 2˙ 2 2 α ˙r + r ϑ + r sin2 ϑ ϕ˙ 2 + . 66) Allein aus der unmittelbaren Beobachtung, dass die Koordinate ϕ zyklisch ist, ergeben sich wichtige physikalische Folgerungen: pϕ = ∂L ˙ = Lz = const .

Generalisierte Koordinaten q festlegen. 3. Lagrange-Funktion L = T − V = L(q, q˙ , t) aufstellen. 4. 36) ableiten und lösen. 5. Rücktransformation auf „anschauliche“ Koordinaten. Wir wollen dieses Verfahren an einigen Anwendungsbeispielen üben. 1) Atwood’sche Fallmaschine Es handelt sich um ein konservatives System mit fünf holonom-skleronomen Zwangsbedingungen: x1 + x2 = l = const , y1 = y2 = z1 = z2 = 0 . Es bleiben also S=6−5=1 x1 Z1 x2 m1 Z2 m2 Abb. 15. Atwood’sche Fallmaschine 22 1. Lagrange-Mechanik Freiheitsgrade.

S . 71) Der erste Summand ist hier gegenüber dem Fall des konservativen Systems neu. 36). 71) auch sehr speziell aus. Es gibt jedoch ein sehr wichtiges Anwendungsbeispiel: Geladenes Teilchen im elektromagnetischen Feld! 32 1. 73) wirkt. Diese ist nicht konservativ. 71). Um dies zu zeigen, schreiben wir F zunächst auf die elektromagnetischen Potentiale, ϕ(r, t) : skalares Potential ; A(r, t) = Vektorpotential , um. 74) automatisch erfüllt sind: B = rot A ; E = −∇ ϕ − ∂ A. 75), die wir im Folgenden nicht weiter benötigen, bezeichnen H das magnetische Feld, D die dielektrische Verschiebung, j die Stromdichte und ρ die Ladungsdichte.

Download PDF sample

Rated 4.71 of 5 – based on 48 votes